Problem set 8

April 2, 2010

Due date: Need not submit (in view of the class text on 10th April)

Exercise 65. Let X_n be independent and $\mathbf{P}(X_n = n^a) = \frac{1}{2} = \mathbf{P}(X_n = -n^a)$ where a > 0 is fixed. For what values of a does the series $\sum X_n$ converge a.s.? For which values of *a* does the series converge absolutely, a.s.?

Exercise 66. (Random series) Let X_n be i.i.d N(0,1) for $n \ge 1$.

- (1) Show that the random series $\sum X_n \frac{\sin(n\pi t)}{n}$ converges a.s., for any $t \in \mathbb{R}$. (2) Show that the random series $\sum X_n \frac{t^n}{\sqrt{n!}}$ converges for all $t \in \mathbb{R}$, a.s.

[Note: The location of the phrase "a.s" is all important here. Let A_t and B_t denote the event that the series converges for the fixed t in the first or second parts of the question, respectively. Then, the first part is asking you to show that $\mathbf{P}(A_t) = 1$ for each $t \in \mathbb{R}$, while the second part is asking you to show that $\mathbf{P}(\cap_{t \in \mathbb{R}} B_t) = 1$. It is also true (and very important!) that $\mathbf{P}(\bigcap_{t \in \mathbb{R}} A_t) = 1$ but showing that is not easy.]

Exercise 67. Suppose X_n are i.i.d random variables with finite mean. Which of the following assumptions guarantee that $\sum X_n$ converges a.s.?

- (1) (i) $\mathbf{E}[X_n] = 0$ for all *n* and (ii) $\sum \mathbf{E}[X_n^2 \wedge 1] < \infty$. (2) (i) $\mathbf{E}[X_n] = 0$ for all *n* and (ii) $\sum \mathbf{E}[X_n^2 \wedge |X_n|] < \infty$.

Exercise 68. (Large deviation for Bernoullis). Let X_n be i.i.d Ber(1/2). Fix $p > \frac{1}{2}$.

- (1) Show that $\mathbf{P}(S_n > np) \le e^{-np\lambda} \left(\frac{e^{\lambda}+1}{2}\right)^n$ for any $\lambda > 0$.
- (2) Optimize over λ to get $\mathbf{P}(S_n > np) \le e^{-nI(p)}$ where $I(p) = -p \log p (1-p) \log(1-p)$. (Observe that this is the *entropy* of the Ber(p) measure introduced in the first class test).
- (3) Recall that $S_n \sim \text{Binom}(n, 1/2)$, to write $\mathbf{P}(S_n = \lceil np \rceil)$ and use Stirling's approximation to show that

$$\mathbf{P}(S_n \ge np) \ge \frac{1}{\sqrt{2\pi np(1-p)}} e^{-nI(p)}$$

(4) Deduce that $\mathbf{P}(S_n \ge np) \approx e^{-nI(p)}$ for $p > \frac{1}{2}$ and $\mathbf{P}(S_n < np) \approx e^{-nI(p)}$ for $p < \frac{1}{2}$ where the notation $a_n \approx b_n$ means $\frac{\log a_n}{\log b_n} \to 1$ as $n \to \infty$ (i.e., asymptotic equality on the logarithmic scale).

Exercise 69. Carry out the same program for i.i.d exponential(1) random variables and deduce that $\mathbf{P}(S_n > nt) \approx$ $e^{-nI(t)}$ for t > 1 and $\mathbf{P}(S_n < nt) \approx e^{-nI(t)}$ for t < 1 where $I(t) := t - 1 - \log t$.

Exercise 70. Let Y_1, \ldots, Y_n be independent random variables. A random variable τ taking values in $\{1, 2, \ldots, n\}$ is called a *stopping time* if the event $\{\tau \le k\} \in \sigma(Y_1, \ldots, Y_k)$ for all *k* (equivalently $\{\tau = k\} \in \sigma(Y_1, \ldots, Y_k)$ for all *k*).

- (1) Which of the following are stopping times? $\tau_1 := \min\{k \le n : S_k \in A\}$ (for some fixed $A \subset \mathbb{R}$). $\tau_2 := \max\{k \le n : S_k \in A\}$. $\tau_3 := \min\{k \le n : S_k = \max_{j \le n} S_j\}$. In the first two cases set $\tau = n$ if the desired event does not occur.
- (2) Assuming each X_k has zero mean, show that $\mathbf{E}[S_{\tau}] = 0$ for any stopping time τ . Assuming that each X_k has zero mean and finite variance, show that $\mathbf{E}[S_1^2] \leq \mathbf{E}[S_{\tau}^2] \leq \mathbf{E}[S_n^2]$ for any stopping time τ .
- (3) Give examples of random τ that are not stopping times and for which the results in the second part of the question fail.